0110244

		11121
Reg. No.		

I Semester B.Sc. Degree Examination, August - 2021 **PHYSICS**

Mechanics -1, Heat and Thermodynamics -1 (CBCS-Semester Scheme 2018-2019 Onwards Repeaters)

Paper: I

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

- Answer any Five questions from each part.
- 2) Use of non-programmable scientific calculator is allowed.

PART-A

Answer any FIVE questions. Each question carries 8 marks:

 $(5 \times 8 = 40)$

State Newton's third law motion and give an example. 1. a)

(2+6)

- Derive an expression for the instantaneous velocity of a body falling freely under gravity where resistance varies directly as the velocity of the body. Represent the variation of velocity with time graphically.
- Define gravitational field and gravitational potential energy. 2. a)

(2+6)

- Define escape velocity. Derive an expression for the escape velocity of a body from b) the surface of a planet.
- 3. Distinguish between conservative and non-conservative forces. a)

(4+4)

- Derive an expression for the velocity of a rocket without considering the acceleration due to gravity.
- Derive Planck's law of radiation. 4.

(8)

- Give the mathematical expression for Maxwell's law of distribution of molecular 5.
 - Using a suitable graph, explain the Maxwell's law of distribution of molecular velocities b) in a gas at different temperature.

P.T.O.

11121

(2+6)

- 6. a) Derive the expression for the thermal conductivity of a gas on the basis kinetic theory of gases. (6+2)
 - b) Discuss the effect of pressure on the thermal conductivity of a gas.
- 7. a) State and explain First Law of Thermodynamics.
 - b) Define an isothermal process. Obtain an expression for work done by an ideal gas in an isothermal process.
- 8. Explain the Carnot's cycle and derive the expression for its efficiency in terms of the temperatures of the source and sink.

 (8)

PART-B

Answer any FIVE questions. Each question carries 4 marks:

 $(5 \times 4 = 20)$

- 9. A force of 10 N acts on a body of mass 1 kg lying on a table with the coefficient of static friction as 0.2 Calculate the frictional force and the acceleration of the body given $g = 10ms^{-2}$.
- 10. The earth is revolving round the sun in a circular orbit of radius with a time period of $3.15 \times 10^7 s$. Calculate the mass of the sun given $G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$.
- 11. A spring has a force constant of $150Nm^{-1}$. Find the work done to extend the spring by 7 mm from its relaxed position?
- 12. A metal sphere of surface area $500cm^2$ at 827^0C is placed in an enclosure at 327^0C . If the surface emissivity of the sphere is 0.5, find the heat radiated by the sphere per second given Stefan's constant $=5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$.
- 13. Calculate the mean free path of a gas having 1.5×10^{25} molecules per cubic metre with each molecule of diameter 4 \mathring{A} .
- 14. The critical pressure, temperature and volume of the gas are $1.316 \times 10^{11} Nm^{-2}$, 33.1K and $6.56 \times 10^{-5} m^3$ per mole respectively, calculate the van der Waals constants of the gas.
- 15. Two moles of an ideal gas at 27°C expands adiabatically till the volume is doubled. Calculate the resulting temperature and the work done by the gas.
- 16. What is the entropy change of a 0.25 kg block of copper when its temperature is increased from 283 K to 293 K? Given specific heat of copper = $388J kg^{-1} K^{-1}$.

PART - C

Answer any FIVE questions. Each question carries 2 marks:

 $(5 \times 2 = 10)$

- 17. a) Can a body remain at rest even though forces are acting on it? Explain.
 - b) Can you stop a car on a frictionless horizontal road by applying brakes? Explain.
 - c) Can kinetic energy be negative? Explain.
 - d) Two bodies of mass m and 2 m have equal momenta. Compare their kinetic energy.
 - e) What is the effect of temperature on the viscosity of
 - i) liquid
- ii) gas
- f) Distinguish between the term Vapour and Gas.
- g) When a tyre bursts, the air coming out is cooler than the surrounding air. Explain the reason.
- h) Does entropy remain constant during an isothermal process? Explain.

BMSCW TIBRARY

LIBRARY

BMSCW LIBRARY